{ "id": "2010.06736", "version": "v1", "published": "2020-10-13T23:27:09.000Z", "updated": "2020-10-13T23:27:09.000Z", "title": "Approximation on slabs and uniqueness for inhomogeneous percolation with a plane of defects", "authors": [ "Bernardo N. B. de Lima", "Humberto C. Sanna", "Daniel Valesin" ], "comment": "29 pages, 6 figures", "categories": [ "math.PR", "math-ph", "math.MP" ], "abstract": "Let $ \\mathbb{L}^{d} = ( \\mathbb{Z}^{d},\\mathbb{E}^{d} ) $ be the $ d $-dimensional hypercubic lattice. We consider a model of inhomogeneous Bernoulli percolation on $ \\mathbb{L}^{d} $ in which every edge inside the $ s $-dimensional hyperplane $ \\mathbb{Z}^{s} \\times \\{ 0 \\}^{d-s} $, $ 2 \\leq s < d $, is open with probability $ q $ and every other edge is open with probability $ p $. We prove the uniqueness of the infinite cluster in the supercritical regime whenever $ p \\neq p_{c}(d) $, where $ p_{c}(d) $ denotes the threshold for homogeneous percolation, and that the critical point $ (p,q_{c}(p)) $ can be approximated on the phase space by the critical points of slabs, for any $ p < p_{c}(d) $.", "revisions": [ { "version": "v1", "updated": "2020-10-13T23:27:09.000Z" } ], "analyses": { "subjects": [ "60K35", "82B43" ], "keywords": [ "inhomogeneous percolation", "uniqueness", "approximation", "dimensional hypercubic lattice", "critical point" ], "note": { "typesetting": "TeX", "pages": 29, "language": "en", "license": "arXiv", "status": "editable" } } }