{ "id": "2010.06295", "version": "v1", "published": "2020-10-13T11:21:24.000Z", "updated": "2020-10-13T11:21:24.000Z", "title": "Dirichlet series of integers with missing digits", "authors": [ "Melvyn B. Nathanson" ], "comment": "7 pages", "categories": [ "math.NT" ], "abstract": "For certain sequences $A$ of positive integers with missing $g$-adic digits, the Dirichlet series $F_A(s) = \\sum_{a\\in A} a^{-s}$ has abscissa of convergence $\\sigma_c < 1$. The number $\\sigma_c$ is computed. This generalizes and strengthens a classical theorem of Kempner on the convergence of the sum of the reciprocals of a sequence of integers with missing decimal digits.", "revisions": [ { "version": "v1", "updated": "2020-10-13T11:21:24.000Z" } ], "analyses": { "subjects": [ "11A63", "11B05", "11B75", "11K16" ], "keywords": [ "dirichlet series", "missing digits", "missing decimal digits", "adic digits", "convergence" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable" } } }