{ "id": "2010.05775", "version": "v1", "published": "2020-10-12T16:57:14.000Z", "updated": "2020-10-12T16:57:14.000Z", "title": "Positive squares written as nontrivial sums of four squares", "authors": [ "Zhi-Wei Sun" ], "comment": "7 pages", "categories": [ "math.NT" ], "abstract": "Let $m$ be any positive integer, and let $\\lambda\\in\\{2,3\\}$. We show that $m^2$ can be written as $x^2+y^2+z^2+w^2$ with $x,y,z,w$ nonnegative integers such that $x+2y+\\lambda z$ is a positive square. We also pose some open conjectures; for example, we conjecture that any positive odd integer can be written as $x^2+y^2+z^2+w^2$ with $x,y,z,w\\in\\{0,1,2,\\ldots\\}$ and $x+2y+3z\\in\\{2^a:\\ a=1,2,3,\\ldots\\}$.", "revisions": [ { "version": "v1", "updated": "2020-10-12T16:57:14.000Z" } ], "analyses": { "subjects": [ "11E25", "11D85", "11E20" ], "keywords": [ "positive squares written", "nontrivial sums", "open conjectures", "positive odd integer", "nonnegative integers" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable" } } }