{ "id": "2010.05667", "version": "v1", "published": "2020-10-12T13:06:19.000Z", "updated": "2020-10-12T13:06:19.000Z", "title": "Frame spectral pairs and exponential bases", "authors": [ "Christina Frederick", "Azita Mayeli" ], "categories": [ "math.CA", "math.FA" ], "abstract": "Given a domain $\\Omega\\subset\\Bbb R^d$ with positive and finite Lebesgue measure and a discrete set $\\Lambda\\subset \\Bbb R^d$, we say that $(\\Omega, \\Lambda)$ is a {\\it frame spectral pair} if the set of exponential functions $\\mathcal E(\\Lambda):=\\{e^{2\\pi i \\lambda \\cdot x}: \\lambda\\in \\Lambda\\}$ is a frame for $L^2(\\Omega)$. Special cases of frames include Riesz bases and orthogonal bases.In the finite setting $\\Bbb Z_N^d$, $d, N\\geq 1$, a frame spectral pair can be defined in a similar way. %(Here, $\\Bbb Z_N$ is the cyclic abelian group of order.) We show how to construct and obtain a new frame spectral pair in $\\Bbb R^d$ by \"adding\" frame spectral pairs in $\\Bbb R^{d}$ and $\\Bbb Z_N^d$. Our construction unifies the well-known examples of exponential frames for the union of cubes with equal volumes. In this paper, we will also obtain a connection between frame spectral pairs and the Whittaker-Shannon interpolation formula when the frame is an orthogonal basis.", "revisions": [ { "version": "v1", "updated": "2020-10-12T13:06:19.000Z" } ], "analyses": { "keywords": [ "frame spectral pair", "exponential bases", "orthogonal basis", "finite lebesgue measure", "cyclic abelian group" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }