{ "id": "2010.05651", "version": "v1", "published": "2020-10-12T12:37:48.000Z", "updated": "2020-10-12T12:37:48.000Z", "title": "On a criterion for Catalan's Conjecture", "authors": [ "Jan-Christoph Schlage-Puchta" ], "journal": "Ramanujan J. 5 (2001), no. 4, 405-407 (2002)", "doi": "10.1023/A:1013947922505", "categories": [ "math.NT" ], "abstract": "We give a new proof of a theorem by P. Mihailescu which states that the equation $x^p-y^q=1$ is unsolvable with $x, y$ integral and $p, q$ odd primes, unless the congruences $p^q \\equiv p\\pmod{q^2}$ and $q^p\\equiv q \\pmod{p^2}$ hold.", "revisions": [ { "version": "v1", "updated": "2020-10-12T12:37:48.000Z" } ], "analyses": { "subjects": [ "11D61" ], "keywords": [ "catalans conjecture", "odd primes", "mihailescu" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }