{ "id": "2010.05510", "version": "v1", "published": "2020-10-12T08:05:14.000Z", "updated": "2020-10-12T08:05:14.000Z", "title": "The infrared-radio correlation of star-forming galaxies is strongly M$_{\\star}$-dependent but nearly redshift-invariant since z$\\sim$4", "authors": [ "I. Delvecchio", "E. Daddi", "M. T. Sargent", "M. J. Jarvis", "D. Elbaz", "S. Jin", "D. Liu", "I. H. Whittam", "H. Algera", "R. Carraro", "C. D'Eugenio", "J. Delhaize", "B. Kalita", "S. Leslie", "D. Cs. Molnar", "M. Novak", "I. Prandoni", "V. Smolcic", "Y. Ao", "M. Aravena", "F. Bournaud", "J. D. Collier", "S. M. Randriamampandry", "Z. Randriamanakoto", "G. Rodighiero", "J. Schober", "S. V. White", "G. Zamorani" ], "comment": "Submitted to A&A. 30 pages, 26 figures, 3 tables. Comments are welcome", "categories": [ "astro-ph.GA" ], "abstract": "Several works in the past decade have used the ratio between total (rest 8-1000$\\mu$m) infrared and radio (rest 1.4 GHz) luminosity in star-forming galaxies (q$_{TIR}$), often referred to as the \"infrared-radio correlation\" (IRRC), to calibrate radio emission as a star formation rate (SFR) indicator. Previous studies constrained the evolution of q$_{TIR}$ with redshift, finding a mild but significant decline, that is yet to be understood. For the first time, we re-calibrate q$_{TIR}$ as a function of both stellar mass (M$_{*}$) and redshift, starting from an M$_{*}$-selected sample of >400,000 star-forming galaxies in the COSMOS field, identified via (NUV-r)/(r-J) colours, at redshifts 0.1