{ "id": "2010.05138", "version": "v1", "published": "2020-10-11T02:16:47.000Z", "updated": "2020-10-11T02:16:47.000Z", "title": "The $3$-class groups of $\\mathbb{Q}(\\sqrt[3]{p})$ and its normal closure", "authors": [ "Jianing Li", "Shenxing Zhang" ], "comment": "6 pages, comments welcome", "categories": [ "math.NT" ], "abstract": "We determine the $3$-class groups of $\\mathbb{Q}(\\sqrt[3]{p})$ and $K=\\mathbb{Q}(\\sqrt[3]{p},\\sqrt{-3})$ when $p\\equiv 4,7\\bmod 9$ is a prime and $3$ is a cubic modulo $p$. This confirms a conjecture made by Barrucand-Cohn, and proves the last remaining case of a conjecture of Lemmermeyer on the $3$-class group of $K$.", "revisions": [ { "version": "v1", "updated": "2020-10-11T02:16:47.000Z" } ], "analyses": { "subjects": [ "11R29", "11R16" ], "keywords": [ "class group", "normal closure", "cubic modulo", "conjecture" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable" } } }