{ "id": "2010.05130", "version": "v1", "published": "2020-10-11T01:19:34.000Z", "updated": "2020-10-11T01:19:34.000Z", "title": "Global existence and singularity of the Hill's type lunar problem with strong potential", "authors": [ "Yanxia Deng", "Slim Ibrahim" ], "comment": "36 pages, 7 figures", "categories": [ "math.DS", "math.AP", "math.CA" ], "abstract": "We characterize the fate of the solutions of Hill's type lunar problem using the ideas of ground states from PDE. In particular, the relative equilibrium will be defined as the ground state, which satisfies some crucial energetic variational properties in our analysis. We study the dynamics of the solutions below, at, and (slightly) above the ground state energy threshold.", "revisions": [ { "version": "v1", "updated": "2020-10-11T01:19:34.000Z" } ], "analyses": { "keywords": [ "hills type lunar problem", "strong potential", "global existence", "ground state energy threshold", "singularity" ], "note": { "typesetting": "TeX", "pages": 36, "language": "en", "license": "arXiv", "status": "editable" } } }