{ "id": "2010.04888", "version": "v1", "published": "2020-10-10T03:15:22.000Z", "updated": "2020-10-10T03:15:22.000Z", "title": "Endpoint regularity for $2d$ Mumford-Shah minimizers: On a theorem of Andersson and Mikayelyan", "authors": [ "Camillo De Lellis", "Matteo Focardi", "Silvia Ghinassi" ], "comment": "25 pages", "categories": [ "math.AP" ], "abstract": "We give an alternative proof of the regularity, up to the loose end, of minimizers, resp. critical points of the Mumford-Shah functional when they are sufficiently close to the cracktip, resp. they consist of a single arc terminating at an interior point.", "revisions": [ { "version": "v1", "updated": "2020-10-10T03:15:22.000Z" } ], "analyses": { "keywords": [ "mumford-shah minimizers", "endpoint regularity", "mikayelyan", "interior point", "mumford-shah functional" ], "note": { "typesetting": "TeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable" } } }