{ "id": "2010.04612", "version": "v1", "published": "2020-10-09T14:41:06.000Z", "updated": "2020-10-09T14:41:06.000Z", "title": "Continuity of the data-to-solution map for the FORQ equation in Besov Spaces", "authors": [ "John Holmes", "Feride Tiglay", "Ryan Thompson" ], "categories": [ "math.AP" ], "abstract": "For Besov spaces $B^s_{p,r}(\\rr)$ with $s>\\max\\{ 2 + \\frac1p , \\frac52\\} $, $p \\in (1,\\infty]$ and $r \\in [1 , \\infty)$, it is proved that the data-to-solution map for the FORQ equation is not uniformly continuous from $B^s_{p,r}(\\rr)$ to $C([0,T]; B^s_{p,r}(\\rr))$. The proof of non-uniform dependence is based on approximate solutions and the Littlewood-Paley decomposition.", "revisions": [ { "version": "v1", "updated": "2020-10-09T14:41:06.000Z" } ], "analyses": { "keywords": [ "forq equation", "data-to-solution map", "besov spaces", "continuity" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }