{ "id": "2010.03908", "version": "v1", "published": "2020-10-08T11:36:39.000Z", "updated": "2020-10-08T11:36:39.000Z", "title": "On semilinear SPDEs with nonlinearities with polynomial growth", "authors": [ "D. A. Bignamini", "S. Ferrari" ], "categories": [ "math.PR", "math.AP" ], "abstract": "Let $\\mathcal{X}$ be a real separable Hilbert space. Let $Q$ be a linear, self-adjoint, positive, trace class operator on $\\mathcal{X}$, let $F:\\X\\rightaarrow\\X$ be a (smooth enough) function and let $\\{W(t)\\}_{t\\geq 0}$ be a $\\mathcal{X}$-valued cylindrical Wiener process. For $\\alpha\\in [0,1/2]$ we consider the operator $A:=-(1/2)Q^{2\\alpha-1}:Q^{1-2\\alpha}(\\mathcal{X})\\subseteq\\mathcal{X}\\rightarrow\\mathcal{X}$. We are interested in the mild solution $X(t,x)$ of the semilinear stochastic partial differential equation \\begin{gather} \\left\\{\\begin{array}{ll} dX(t,x)=\\big(AX(t,x)+F(X(t,x))\\big)dt+ Q^{\\alpha}dW(t), & t>0;\\\\ X(0,x)=x\\in \\mathcal{X}, \\end{array} \\right. \\end{gather} and in its associated transition semigroup \\begin{align} P(t)\\varphi(x):=E[\\varphi(X(t,x))], \\qquad \\varphi\\in B_b(\\mathcal{X}),\\ t\\geq 0,\\ x\\in \\mathcal{X}; \\end{align} where $B_b(\\mathcal{X})$ is the space of the real-valued, bounded and Borel measurable functions on $\\mathcal{X}$. In this paper we study the behavior of the semigroup $P(t)$ in the space $L^2(\\mathcal{X},\\nu)$, where $\\nu$ is the unique invariant probability measure of \\eqref{Tropical}, when $F$ is dissipative and has polynomial growth. Then we prove the logarithmic Sobolev and the Poincar\\'e inequalities and we study the maximal Sobolev regularity for the stationary equation \\[\\lambda u-N_2 u=f,\\qquad \\lambda>0,\\ f\\in L^2(\\mathcal{X},\\nu);\\] where $N_2$ is the infinitesimal generator of $P(t)$ in $L^2(\\mathcal{X},\\nu)$.", "revisions": [ { "version": "v1", "updated": "2020-10-08T11:36:39.000Z" } ], "analyses": { "subjects": [ "28C10", "28C20", "35J15", "46G12", "60G15", "60H15" ], "keywords": [ "polynomial growth", "semilinear spdes", "semilinear stochastic partial differential equation", "nonlinearities", "unique invariant probability measure" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }