{ "id": "2010.02111", "version": "v1", "published": "2020-10-05T15:53:41.000Z", "updated": "2020-10-05T15:53:41.000Z", "title": "Rényi Entropy, Signed Probabilities, and the Qubit", "authors": [ "Adam Brandenburger", "Pierfrancesco La Mura", "Stuart Zoble" ], "comment": "11 pages, 1 figure", "categories": [ "quant-ph", "math-ph", "math.MP" ], "abstract": "The states of the qubit, the basic unit of quantum information, are $2\\times2$ positive semi-definite Hermitian matrices with trace $1$. We characterize these states in terms of an entropic uncertainty principle formulated on an eight-point phase space.", "revisions": [ { "version": "v1", "updated": "2020-10-05T15:53:41.000Z" } ], "analyses": { "keywords": [ "rényi entropy", "signed probabilities", "eight-point phase space", "entropic uncertainty principle", "positive semi-definite hermitian matrices" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable" } } }