{ "id": "2010.01803", "version": "v1", "published": "2020-10-05T06:33:52.000Z", "updated": "2020-10-05T06:33:52.000Z", "title": "Pro-nilfactors of the space of arithmetic progressions in topological dynamical systems", "authors": [ "Zhengxing Lian", "Jiahao Qiu" ], "categories": [ "math.DS" ], "abstract": "For a topological dynamical system $(X, T)$, $l\\in\\mathbb{N}$ and $x\\in X$, let $N_l(X)$ and $L_x^l(X)$ be the orbit closures of the diagonal point $(x,x,\\ldots,x)$ ($l $ times) under the actions $\\mathcal{G}_{l}$ and $\\tau_l $ respectively, where $\\mathcal{G}_{l}$ is generated by $T\\times T\\times \\ldots \\times T$ ($l $ times) and $\\tau_l=T\\times T^2\\times \\ldots \\times T^l$. In this paper, we show that for a minimal system $(X,T)$ and $l\\in \\mathbb{N}$, the maximal $d$-step pro-nilfactor of $(N_l(X),\\mathcal{G}_{l})$ is $(N_l(X_d),\\mathcal{G}_{l})$, where $\\pi_d:X\\to X/\\mathbf{RP}^{[d]}=X_d,d\\in \\mathbb{N}$ is the factor map and $\\mathbf{RP}^{[d]}$ is the regionally proximal relation of order $d$. Meanwhile, when $(X,T)$ is a minimal nilsystem, we also calculate the pro-nilfactors of $(L_x^l(X),\\tau_l)$ for almost every $x$ w.r.t. the Haar measure. In particular, there exists a minimal $2$-step nilsystem $(Y,T)$ and a countable set $\\Omega\\subset Y$ such that for $y\\in Y\\backslash \\Omega$ the maximal equicontinuous factor of $(L_y^2(Y),\\tau_2)$ is not $(L_{\\pi_1(y)}^2(Y_{1}),\\tau_2)$.", "revisions": [ { "version": "v1", "updated": "2020-10-05T06:33:52.000Z" } ], "analyses": { "keywords": [ "topological dynamical system", "arithmetic progressions", "step nilsystem", "haar measure", "diagonal point" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }