{ "id": "2010.01714", "version": "v1", "published": "2020-10-04T23:07:40.000Z", "updated": "2020-10-04T23:07:40.000Z", "title": "Arithmetic inflection formulae for linear series on hyperelliptic curves", "authors": [ "Ethan Cotterill", "Ignacio Darago", "Changho Han" ], "comment": "22 pages, 4 figures", "categories": [ "math.AG", "math.AT", "math.NT" ], "abstract": "Over the complex numbers, Pl\\\"ucker's formula computes the number of inflection points of a linear series of projective dimension $r$ and degree $d$ on a curve of genus $g$. Here we explore the geometric meaning of a natural analogue of Pl\\\"ucker's formula in $\\mathbb{A}^1$-homotopy theory for certain linear series on hyperelliptic curves defined over an arbitrary field.", "revisions": [ { "version": "v1", "updated": "2020-10-04T23:07:40.000Z" } ], "analyses": { "subjects": [ "14C20", "14C35", "14N10", "14P25", "14Hxx", "11Gxx", "11Txx", "19E15" ], "keywords": [ "linear series", "arithmetic inflection formulae", "hyperelliptic curves", "inflection points", "arbitrary field" ], "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable" } } }