{ "id": "2010.00978", "version": "v1", "published": "2020-10-02T13:16:59.000Z", "updated": "2020-10-02T13:16:59.000Z", "title": "Orthogonality in Banach Spaces via projective tensor product", "authors": [ "Kousik Dhara", "Narayan Rakshit", "Jaydeb Sarkar", "Aryaman Sensarma" ], "comment": "8 pages", "categories": [ "math.FA", "math.OA" ], "abstract": "Let $X$ be a complex Banach space and $x,y\\in X$. By definition, we say that $x$ is Birkhoff-James orthogonal to $y$ if $ \\|x+\\lambda y\\|_{X} \\geq \\|x\\|_{X}$ for all $\\lambda \\in \\mathbb{C}$. We prove that $x$ is Birkhoff-James orthogonal to $y$ if and only if there exists a semi-inner product $\\varphi$ on $X$ such that $\\|\\varphi\\| = 1$, $\\varphi(x,x)=\\|x\\|^2$ and $\\varphi(x,y)=0$. A similar result holds for $C^*$-algebras. A key point in our approach to orthogonality is the representations of bounded bilinear maps via projective tensor product spaces.", "revisions": [ { "version": "v1", "updated": "2020-10-02T13:16:59.000Z" } ], "analyses": { "subjects": [ "46B28", "47A30", "46B20", "46B22", "47B01", "47L05" ], "keywords": [ "orthogonality", "birkhoff-james orthogonal", "projective tensor product spaces", "complex banach space", "similar result holds" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable" } } }