{ "id": "2010.00580", "version": "v1", "published": "2020-10-01T17:53:17.000Z", "updated": "2020-10-01T17:53:17.000Z", "title": "Ball packings for links", "authors": [ "Jorge Luis Ramírez Alfonsín", "Ivan Rasskin" ], "categories": [ "math.CO", "math.GT" ], "abstract": "The ball number of a link $L$, denoted by $ball(L)$, is the minimum number of solid balls needed to realize a necklace representing $L$. In this paper, we show that $ball(L)\\leq 5 cr(L)$ where $cr(L)$ denotes the crossing number of $L$. To this end, we use Lorenz geometry applied to ball packings. Our approach yields to an algorithm to construct explicitly the desired necklace representation of $L$ in the 3-dimensional space.", "revisions": [ { "version": "v1", "updated": "2020-10-01T17:53:17.000Z" } ], "analyses": { "subjects": [ "52C17", "57K10" ], "keywords": [ "ball packings", "minimum number", "ball number", "lorenz geometry", "approach yields" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }