{ "id": "2010.00135", "version": "v1", "published": "2020-09-30T22:41:41.000Z", "updated": "2020-09-30T22:41:41.000Z", "title": "Blaschke-Santalo inequality for many functions and geodesic barycenters of measures", "authors": [ "Alexander V. Kolesnikov", "Elisabeth M. Werner" ], "categories": [ "math.FA" ], "abstract": "Motivated by the geodesic barycenter problem from optimal transportation theory, we prove a natural generalization of the Blaschke-Santalo inequality for many sets and many functions. We derive from it an entropy bound for the total Kantorovich cost appearing in the barycenter problem.", "revisions": [ { "version": "v1", "updated": "2020-09-30T22:41:41.000Z" } ], "analyses": { "keywords": [ "blaschke-santalo inequality", "geodesic barycenter problem", "optimal transportation theory", "natural generalization", "entropy bound" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }