{ "id": "2010.00107", "version": "v1", "published": "2020-09-30T21:06:04.000Z", "updated": "2020-09-30T21:06:04.000Z", "title": "Sobolev Orthogonal Polynomials on the Sierpinski Gasket", "authors": [ "Qingxuan Jiang", "Tian Lan", "Kasso Okoudjou", "Robert Strichartz", "Shashank Sule", "Sreeram Venkat", "Xiaoduo Wang" ], "categories": [ "math.CA" ], "abstract": "We develop a theory of Sobolev orthogonal polynomials on the Sierpi\\'nski gasket ($SG$). These orthogonal polynomials arise through the Gram-Schmidt orthogonalisation process applied on the set of monomials on $SG$ using several notions of a Sobolev inner products. After establishing some recurrence relations for these orthogonal polynomials, we give estimates for their $L^2$, $L^\\infty$ and Sobolev norms, and study their asymptotic behaviour. Finally, we study the properties of zero sets of polynomials and develop fast computational tools to explore applications to quadrature and interpolation.", "revisions": [ { "version": "v1", "updated": "2020-09-30T21:06:04.000Z" } ], "analyses": { "subjects": [ "42C05", "28A80", "33F05", "33A99" ], "keywords": [ "sobolev orthogonal polynomials", "sierpinski gasket", "gram-schmidt orthogonalisation process", "orthogonal polynomials arise", "sobolev inner products" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }