{ "id": "2009.14672", "version": "v1", "published": "2020-09-30T13:52:22.000Z", "updated": "2020-09-30T13:52:22.000Z", "title": "A generalisation of the Burkholder-Davis-Gundy inequalities", "authors": [ "Saul Jacka", "Ma. Elena Hérnandez-Hérnandez" ], "comment": "6 pages", "categories": [ "math.PR" ], "abstract": "Consider a c\\'adl\\'ag local martingale $M$ with square brackets $[M]$. In this paper, we provide lower and upper bounds for expectations of the type $E [M]^{q/2}_{\\tau}$, for any stopping time $\\tau$ and $q\\ge 2$. This result is a Burkholder-Davis-Gundy-type inequality as it relates the expectation of the running maximum $|M^*|^q$ to the expectation of the dual previsible projections of the relevant powers of the associated jumps of $M$. The case of convex moderate functions is also treated.", "revisions": [ { "version": "v1", "updated": "2020-09-30T13:52:22.000Z" } ], "analyses": { "subjects": [ "60G07", "60H05" ], "keywords": [ "burkholder-davis-gundy inequalities", "generalisation", "cadlag local martingale", "convex moderate functions", "expectation" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable" } } }