{ "id": "2009.14511", "version": "v1", "published": "2020-09-30T08:57:03.000Z", "updated": "2020-09-30T08:57:03.000Z", "title": "Parameter spaces of locally constant cocycles", "authors": [ "Argyrios Christodoulou" ], "comment": "21 pages, 10 figures", "categories": [ "math.DS" ], "abstract": "This article concerns the locus of all locally constant $\\mathrm{SL}(2,\\mathbb{R})$-valued cocycles that are uniformly hyperbolic, called the hyperbolic locus. Using the theory of semigroups of M\\\"obius transformations we introduce a new locus in $\\mathrm{SL}(2,\\mathbb{R})^N$ which allows us to study the complement of the hyperbolic locus. Our results answer a question of Avila, Bochi and Yoccoz, and Jacques and Short, while motivating a new line of investigation on the subject.", "revisions": [ { "version": "v1", "updated": "2020-09-30T08:57:03.000Z" } ], "analyses": { "subjects": [ "37D20", "30F45" ], "keywords": [ "locally constant cocycles", "parameter spaces", "hyperbolic locus", "article concerns", "results answer" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable" } } }