{ "id": "2009.13967", "version": "v1", "published": "2020-09-29T12:35:11.000Z", "updated": "2020-09-29T12:35:11.000Z", "title": "A shape variation result via the geometry of eigenfunctions", "authors": [ "T. V. Anoop", "K. Ashok Kumar", "Srinivasan Kesavan" ], "comment": "21 pages, 3 figures", "categories": [ "math.AP", "math.OC" ], "abstract": "We discuss some of the geometric properties, such as the foliated Schwarz symmetry, the monotonicity along the axial and the affine-radial directions, of the first eigenfunctions of the Zaremba problem for the Laplace operator on annular domains. These fine geometric properties, together with the shape calculus, help us to prove that the first eigenvalue is strictly decreasing as the inner ball moves towards the boundary of the outer ball.", "revisions": [ { "version": "v1", "updated": "2020-09-29T12:35:11.000Z" } ], "analyses": { "subjects": [ "35B06", "35B07", "35B50", "35B51", "35Q93", "49Q10", "58J70" ], "keywords": [ "shape variation result", "inner ball moves", "fine geometric properties", "foliated schwarz symmetry", "first eigenvalue" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable" } } }