{ "id": "2009.13786", "version": "v1", "published": "2020-09-29T05:31:39.000Z", "updated": "2020-09-29T05:31:39.000Z", "title": "Web Calculus and Tilting Modules in Type $C_2$", "authors": [ "Elijah Bodish" ], "comment": "33 pages, many figures, preliminary version", "categories": [ "math.RT", "math.QA" ], "abstract": "Using Kuperberg's $B_2/C_2$ webs, and following Elias and Libedinsky, we describe a \"light leaves\" algorithm to construct a basis of morphisms between arbitrary tensor products of fundamental representations for $\\mathfrak{so}_5\\cong \\mathfrak{sp}_4$ (and the associated quantum group). Our argument has very little dependence on the base field. As a result, we prove that when $[2]_q\\ne 0$, the Karoubi envelope of the $C_2$ web category is equivalent to the category of tilting modules for the divided powers quantum group $\\mathcal{U}_q^{\\mathbb{Z}}(\\mathfrak{sp}_4)$.", "revisions": [ { "version": "v1", "updated": "2020-09-29T05:31:39.000Z" } ], "analyses": { "keywords": [ "tilting modules", "web calculus", "divided powers quantum group", "arbitrary tensor products", "little dependence" ], "note": { "typesetting": "TeX", "pages": 33, "language": "en", "license": "arXiv", "status": "editable" } } }