{ "id": "2009.13726", "version": "v1", "published": "2020-09-29T02:05:06.000Z", "updated": "2020-09-29T02:05:06.000Z", "title": "Singularity of Bernoulli matrices in the sparse regime $pn = O(\\log(n))$", "authors": [ "Han Huang" ], "categories": [ "math.PR" ], "abstract": "Consider an $n\\times n$ random matrix $A_n$ with i.i.d Bernoulli($p$) entries. In a recent result of Litvak-Tikhomirov, they proved the conjecture $$ \\mathbb{P}\\{\\mbox{$A_n$ is singular}\\}=(1+o_n(1)) \\mathbb{P}\\big\\{\\mbox{either a row or a column of $A_n$ equals zero}\\big\\}. $$ for $ C\\frac{\\log(n)}{n} \\le p \\le \\frac{1}{C}$ for some large constant $C>1$. In this paper, we setted this conjecture in the sparse regime when $p$ satisfies $$ 1 \\le \\liminf_{n\\rightarrow \\infty} \\frac{pn}{\\log(n)} \\le \\limsup_{n\\rightarrow \\infty} \\frac{pn}{\\log(n)} < + \\infty. $$", "revisions": [ { "version": "v1", "updated": "2020-09-29T02:05:06.000Z" } ], "analyses": { "keywords": [ "sparse regime", "bernoulli matrices", "singularity", "random matrix", "conjecture" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }