{ "id": "2009.13647", "version": "v1", "published": "2020-09-28T21:48:49.000Z", "updated": "2020-09-28T21:48:49.000Z", "title": "Stable cubulations, bicombings, and barycenters", "authors": [ "Matthew G. Durham", "Yair N. Minsky", "Alessandro Sisto" ], "comment": "80 pages, 25 figures", "categories": [ "math.GR", "math.GT", "math.MG" ], "abstract": "We prove that the hierarchical hulls of finite sets of points in mapping class groups and Teichm\\\"uller spaces are stably approximated by a CAT(0) cube complexes, strengthening a result of Behrstock-Hagen-Sisto. As applications, we prove that mapping class groups are semihyperbolic and Teichm\\\"uller spaces are coarsely equivariantly bicombable, and both admit stable coarse barycenters. Our results apply to the broader class of \"colorable\" hierarchically hyperbolic spaces and groups.", "revisions": [ { "version": "v1", "updated": "2020-09-28T21:48:49.000Z" } ], "analyses": { "subjects": [ "20F67", "20F65", "30F60", "57M60", "57M07" ], "keywords": [ "stable cubulations", "mapping class groups", "bicombings", "admit stable coarse barycenters", "broader class" ], "note": { "typesetting": "TeX", "pages": 80, "language": "en", "license": "arXiv", "status": "editable" } } }