{ "id": "2009.13500", "version": "v1", "published": "2020-09-28T17:47:25.000Z", "updated": "2020-09-28T17:47:25.000Z", "title": "A priori estimates for classification problems using neural networks", "authors": [ "Weinan E", "Stephan Wojtowytsch" ], "categories": [ "stat.ML", "cs.LG", "cs.NA", "math.NA" ], "abstract": "We consider binary and multi-class classification problems using hypothesis classes of neural networks. For a given hypothesis class, we use Rademacher complexity estimates and direct approximation theorems to obtain a priori error estimates for regularized loss functionals.", "revisions": [ { "version": "v1", "updated": "2020-09-28T17:47:25.000Z" } ], "analyses": { "subjects": [ "68T07", "60-08" ], "keywords": [ "neural networks", "priori estimates", "hypothesis class", "direct approximation theorems", "rademacher complexity estimates" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }