{ "id": "2009.13486", "version": "v1", "published": "2020-09-28T17:21:28.000Z", "updated": "2020-09-28T17:21:28.000Z", "title": "Boundary and Eisenstein Cohomology of $G_2(\\mathbb{Z})$", "authors": [ "Jitendra Bajpai", "Lifan Guan" ], "comment": "38 Pages", "categories": [ "math.NT", "math.AG" ], "abstract": "In this article, Eisenstein cohomology of the arithmetic group $G_2(\\mathbb{Z})$ with coefficients in any finite dimensional highest weight irreducible representation has been determined. We accomplish this by studying the cohomology of the boundary of the Borel-Serre compactification.", "revisions": [ { "version": "v1", "updated": "2020-09-28T17:21:28.000Z" } ], "analyses": { "subjects": [ "11F75", "11F70", "11F22", "11F06" ], "keywords": [ "eisenstein cohomology", "dimensional highest weight irreducible representation", "finite dimensional highest weight irreducible", "arithmetic group", "borel-serre compactification" ], "note": { "typesetting": "TeX", "pages": 38, "language": "en", "license": "arXiv", "status": "editable" } } }