{ "id": "2009.12977", "version": "v1", "published": "2020-09-27T23:01:23.000Z", "updated": "2020-09-27T23:01:23.000Z", "title": "The similarity method and explicit solutions for the fractional space one-phase Stefan problems", "authors": [ "S. D. Roscani", "D. A. Tarzia", "L. Venturato" ], "comment": "20 pages, 1 figure", "categories": [ "math.AP" ], "abstract": "In this paper we obtain self-similarity solutions for a one-phase one-dimensional fractional space one-phase Stefan problem in terms of the three parametric Mittag-Leffer function $E_{\\alpha,m;l}(z)$. We consider Dirichlet and Newmann conditions at the fixed face, involving Caputo fractional space derivatives of order $0 < \\alpha < 1$. We recover the solution for the classical one-phase Stefan problem when the order of the Caputo derivatives approaches one.", "revisions": [ { "version": "v1", "updated": "2020-09-27T23:01:23.000Z" } ], "analyses": { "subjects": [ "26A33", "35C06", "35R11", "35R35", "80A22" ], "keywords": [ "fractional space one-phase stefan problem", "explicit solutions", "similarity method", "one-phase one-dimensional fractional space one-phase", "one-dimensional fractional space one-phase stefan" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable" } } }