{ "id": "2009.12641", "version": "v1", "published": "2020-09-26T17:00:45.000Z", "updated": "2020-09-26T17:00:45.000Z", "title": "A q-analog of the binomial distribution", "authors": [ "Andrew V. Sills" ], "comment": "7 pages", "categories": [ "math.PR", "math.CO", "math.ST", "stat.TH" ], "abstract": "$q$-analogs of special functions, including hypergeometric functions, play a central role in mathematics and have numerous applications in physics. In the theory of probability, $q$-analogs of various continuous distributions have been introduced over the years. Here I propose a $q$-analog of a discrete distribution: the binomial distribution.", "revisions": [ { "version": "v1", "updated": "2020-09-26T17:00:45.000Z" } ], "analyses": { "subjects": [ "60E05" ], "keywords": [ "binomial distribution", "special functions", "discrete distribution", "hypergeometric functions", "central role" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable" } } }