{ "id": "2009.12492", "version": "v1", "published": "2020-09-26T01:08:51.000Z", "updated": "2020-09-26T01:08:51.000Z", "title": "Generalized Differentiation of Expected-Integral Mappings with Applications to Stochastic Programming, Part~I: Sequential Calculus for Expected-Integral Functionals", "authors": [ "Boris S. Mordukhovich", "Pedro Pérez-Aros" ], "comment": "23 pages", "categories": [ "math.OC" ], "abstract": "Motivated by applications to stochastic programming, we introduce and study the {\\em expected-integral functionals} in the form \\begin{align*} \\mathbb{R}^n\\times \\operatorname{L}^1(T,\\mathbb{R}^m)\\ni(x,y)\\to\\operatorname{E}_\\varphi(x,y):=\\int_T\\varphi_t(x,y(t))d\\mu \\end{align*} defined for extended-real-valued normal integrand functions $\\varphi:T\\times\\mathbb{R}^n\\times\\mathbb{R}^m\\to[-\\infty,\\infty]$ on complete finite measure spaces $(T,\\mathcal{A},\\mu)$. The main goal of this paper is to establish sequential versions of Leibniz's rule for regular subgradients by employing and developing appropriate tools of variational analysis.", "revisions": [ { "version": "v1", "updated": "2020-09-26T01:08:51.000Z" } ], "analyses": { "subjects": [ "49J53", "90C15", "49J52" ], "keywords": [ "expected-integral functionals", "expected-integral mappings", "stochastic programming", "sequential calculus", "generalized differentiation" ], "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable" } } }