{ "id": "2009.10810", "version": "v1", "published": "2020-09-22T20:55:47.000Z", "updated": "2020-09-22T20:55:47.000Z", "title": "On the number of contingency tables and the independence heuristic", "authors": [ "Hanbaek Lyu", "Igor Pak" ], "comment": "10 pages, 1 figure", "categories": [ "math.CO", "math.PR", "math.ST", "stat.TH" ], "abstract": "We obtain sharp asymptotic estimates on the number of $n \\times n$ contingency tables with two linear margins $Cn$ and $BCn$. The results imply a second order phase transition on the number of such contingency tables, with a critical value at \\ts $B_{c}:=1 + \\sqrt{1+1/C}$. As a consequence, for \\ts $B>B_{c}$, we prove that the classical \\emph{independence heuristic} leads to a large undercounting.", "revisions": [ { "version": "v1", "updated": "2020-09-22T20:55:47.000Z" } ], "analyses": { "keywords": [ "contingency tables", "independence heuristic", "second order phase transition", "sharp asymptotic estimates", "linear margins" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }