{ "id": "2009.10698", "version": "v1", "published": "2020-09-22T17:17:47.000Z", "updated": "2020-09-22T17:17:47.000Z", "title": "Limit Theorems for Trawl Processes", "authors": [ "Mikko S. Pakkanen", "Riccardo Passeggeri", "Orimar Sauri", "Almut E. D. Veraart" ], "comment": "35 pages", "categories": [ "math.PR" ], "abstract": "In this work we derive limit theorems for trawl processes. First,we study the asymptotic behaviour of the partial sums of the discretized trawl process $(X_{i\\Delta_{n}})_{i=0}^{\\lfloor nt\\rfloor-1}$, under the assumption that as $n\\uparrow\\infty$, $\\Delta_{n}\\downarrow0$ and $n\\Delta_{n}\\rightarrow\\mu\\in[0,+\\infty]$. Second, we derive a functional limit theorem for trawl processes as the L\\'{e}vy measure of the trawl seed grows to infinity and show that the limiting process has a Gaussian moving average representation.", "revisions": [ { "version": "v1", "updated": "2020-09-22T17:17:47.000Z" } ], "analyses": { "keywords": [ "functional limit theorem", "gaussian moving average representation", "derive limit theorems", "discretized trawl process", "asymptotic behaviour" ], "note": { "typesetting": "TeX", "pages": 35, "language": "en", "license": "arXiv", "status": "editable" } } }