{ "id": "2009.10573", "version": "v1", "published": "2020-09-22T14:27:33.000Z", "updated": "2020-09-22T14:27:33.000Z", "title": "Noise-induced strong stabilization", "authors": [ "Matti Leimbach", "Jonathan C. Mattingly", "Michael Scheutzow" ], "categories": [ "math.DS", "math.PR" ], "abstract": "We consider a 2-dimensional stochastic differential equation in polar coordinates depending on several parameters. We show that if these parameters belong to a specific regime then the deterministic system explodes in finite time, but the random dynamical system corresponding to the stochastic equation is not only strongly complete but even admits a random attractor.", "revisions": [ { "version": "v1", "updated": "2020-09-22T14:27:33.000Z" } ], "analyses": { "subjects": [ "37H30", "60H10", "34D45" ], "keywords": [ "noise-induced strong stabilization", "stochastic differential equation", "deterministic system explodes", "polar coordinates", "specific regime" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }