{ "id": "2009.10154", "version": "v1", "published": "2020-09-21T19:53:01.000Z", "updated": "2020-09-21T19:53:01.000Z", "title": "The Rumin complex on nilpotent Lie groups", "authors": [ "Francesca Tripaldi" ], "categories": [ "math.DG" ], "abstract": "In this paper an alternative definition of the Rumin complex $(E_0^\\bullet,d_c)$ is presented, one that relies on a different concept of weights of forms. In this way, the Rumin complex can be constructed on any nilpotent Lie group equipped with a Carnot-Carath\\'eodory metric. Moreover, this construction allows for the direct application of previous non-vanishing results of $\\ell^{q,p}$ cohomology to all nilpotent Lie groups that admit a positive grading.", "revisions": [ { "version": "v1", "updated": "2020-09-21T19:53:01.000Z" } ], "analyses": { "subjects": [ "22E25", "57R19", "58A15" ], "keywords": [ "nilpotent lie group", "rumin complex", "carnot-caratheodory metric", "direct application", "alternative definition" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }