{ "id": "2009.10102", "version": "v1", "published": "2020-09-21T18:02:16.000Z", "updated": "2020-09-21T18:02:16.000Z", "title": "Note on an elementary inequality and its application to the regularity of $p$-harmonic functions", "authors": [ "Saara Sarsa" ], "comment": "15 pages", "categories": [ "math.AP" ], "abstract": "We study the Sobolev regularity of $p$-harmonic functions. We show that $|Du|^{\\frac{p-2+s}{2}}Du$ belongs to the Sobolev space $W^{1,2}_{loc}$, $s>-1-\\frac{p-1}{n-1}$, for any $p$-harmonic function $u$. The proof is based on an elementary inequality.", "revisions": [ { "version": "v1", "updated": "2020-09-21T18:02:16.000Z" } ], "analyses": { "keywords": [ "harmonic function", "elementary inequality", "application", "sobolev regularity" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable" } } }