{ "id": "2009.09885", "version": "v1", "published": "2020-09-21T14:08:57.000Z", "updated": "2020-09-21T14:08:57.000Z", "title": "Multiple zeta values and iterated Eisenstein integrals", "authors": [ "Alex Saad" ], "categories": [ "math.NT" ], "abstract": "Brown showed that the affine ring of the motivic path torsor $\\pi_1^{\\text{mot}}(\\mathbb{P}^1 \\backslash \\left\\{0,1,\\infty\\right\\}, \\vec{1}_0, -\\vec{1}_1)$, whose periods are multiple zeta values, generates the Tannakian category $\\mathsf{MT}(\\mathbb{Z})$ of mixed Tate motives over $\\mathbb{Z}$. Brown also introduced multiple modular values, which are periods of the relative completion of the fundamental group of the moduli stack $\\mathcal{M}_{1,1}$ of elliptic curves. We prove that all motivic multiple zeta values may be expressed as $\\mathbb{Q}[2 \\pi i]$-linear combinations of motivic iterated Eisenstein integrals along elements of $\\pi_1 (\\mathcal{M}_{1,1}) \\cong SL_2(\\mathbb{Z})$, which are examples of motivic multiple modular values. This provides a new modular generator for $\\mathsf{MT}(\\mathbb{Z})$. We also explain how the coefficients in this linear combination may be partially determined using the motivic coaction.", "revisions": [ { "version": "v1", "updated": "2020-09-21T14:08:57.000Z" } ], "analyses": { "subjects": [ "11M32", "11F57", "14F35", "18M25" ], "keywords": [ "linear combination", "motivic multiple modular values", "motivic multiple zeta values", "motivic path torsor", "motivic iterated eisenstein integrals" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }