{ "id": "2009.09686", "version": "v1", "published": "2020-09-21T08:50:46.000Z", "updated": "2020-09-21T08:50:46.000Z", "title": "Vector-valued Sobolev spaces based on Banach function spaces", "authors": [ "Nikita Evseev" ], "categories": [ "math.FA" ], "abstract": "It is known that for Banach valued functions there are several approaches to define a Sobolev class. We compare the usual definition via weak derivatives with the Reshetnyak-Sobolev space and with the Newtonian space; in particular, we provide sufficient conditions when all three agree. As well we revise the difference quotient criterion and the property of Lipschitz mapping to preserve Sobolev space when it acting as a superposition operator.", "revisions": [ { "version": "v1", "updated": "2020-09-21T08:50:46.000Z" } ], "analyses": { "subjects": [ "46E35", "46E40", "46B22" ], "keywords": [ "banach function spaces", "vector-valued sobolev spaces", "preserve sobolev space", "difference quotient criterion", "sufficient conditions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }