{ "id": "2009.09203", "version": "v1", "published": "2020-09-19T10:07:08.000Z", "updated": "2020-09-19T10:07:08.000Z", "title": "An equidistribution theorem for biraitonal maps of $\\mathbb{P}^k$", "authors": [ "Taeyong Ahn" ], "comment": "Comments are very welcome!", "categories": [ "math.DS", "math.CV" ], "abstract": "We prove an equidistribution theorem of positive closed currents for a certain class of birational maps $f_+:\\mathbb{P}^k\\to\\mathbb{P}^k$ of algebraic degree $d\\geq 2$ satisfying $\\bigcup_{n\\geq 0}f_-^n(I^+)\\cap \\bigcup_{n\\geq 0}f_+^n(I^-)=\\emptyset$, where $f_-$ is the inverse of $f_+$ and $I^\\pm$ are the sets of indeterminacy for $f_\\pm$, respectively.", "revisions": [ { "version": "v1", "updated": "2020-09-19T10:07:08.000Z" } ], "analyses": { "keywords": [ "equidistribution theorem", "biraitonal maps", "birational maps", "algebraic degree" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }