{ "id": "2009.07978", "version": "v1", "published": "2020-09-16T23:57:47.000Z", "updated": "2020-09-16T23:57:47.000Z", "title": "Semidistributivity and Whitman Property in Implication Zroupoids", "authors": [ "Juan M. Cornejo", "Hanamantagouda P. Sankappanavar" ], "comment": "11 pages", "categories": [ "math.LO" ], "abstract": "In 2012, the second author introduced and studied the variety $\\mathcal{I}$ of implication zroupoids that generalize De Morgan algebras and $\\lor$-semilattices with $0$. An algebra $\\mathbf A = \\langle A, \\to, 0 \\rangle$, where $\\to$ is binary and $0$ is a constant, is called an \\emph{implication zroupoid} ($\\mathcal{I}$-zroupoid, for short) if $\\mathbf A$ satisfies: $(x \\to y) \\to z \\approx [(z' \\to x) \\to (y \\to z)']'$, where $x' : = x \\to 0$, and $ 0'' \\approx 0$. Let $\\mathcal{I}$ denote the variety of implication zroupoids and $\\mathbf A \\in \\mathcal{I}$. For $x,y \\in \\mathbf A$, let $x \\land y := (x \\to y')'$ and $x \\lor y := (x' \\land y')'$. In an earlier paper we had proved that if $\\mathbf A \\in \\mathcal{I}$, then the algebra $\\mathbf A_{mj} = \\langle A, \\lor, \\land \\rangle$ is a bisemigroup. In this paper we generalize the notion of semi-distributivity from lattices to bisemigroups and prove that, for every $\\mathbf A \\in \\mathcal{I}$, the bisemigroup $\\mathbf A_{mj}$ is semidistributive. Secondly, we generalize the Whitman Property from lattices to bisemigroups and prove that the subvariety $\\mathcal{MEJ}$ of $\\mathcal I$, defined by the identity: $x \\land y \\approx x \\lor y$, satisfies the Whitman Property.", "revisions": [ { "version": "v1", "updated": "2020-09-16T23:57:47.000Z" } ], "analyses": { "subjects": [ "06D30", "06E75", "08B15", "20N02", "03G10" ], "keywords": [ "implication zroupoids", "whitman property", "semidistributivity", "bisemigroup", "morgan algebras" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable" } } }