{ "id": "2009.07272", "version": "v1", "published": "2020-09-15T19:47:37.000Z", "updated": "2020-09-15T19:47:37.000Z", "title": "Existence and concentration of solution for Schrödinger-Poisson system with local potential", "authors": [ "Zhipeng Yang", "Yuanyang Yu" ], "comment": "20 pages, comments are welcome", "categories": [ "math.AP" ], "abstract": "In this paper, we study the following nonlinear Schr\\\"odinger-Poisson type equation \\begin{equation*} \\begin{cases} -\\varepsilon^2\\Delta u+V(x)u+K(x)\\phi u=f(u)&\\text{in}\\ \\mathbb{R}^3,\\\\ -\\varepsilon^2\\Delta \\phi=K(x)u^2&\\text{in}\\ \\mathbb{R}^3, \\end{cases} \\end{equation*} where $\\varepsilon>0$ is a small parameter, $V: \\mathbb{R}^3\\rightarrow \\mathbb{R}$ is a continuous potential and $K: \\mathbb{R}^3\\rightarrow \\mathbb{R}$ is used to describe the electron charge. Under suitable assumptions on $V(x), K(x)$ and $f$, we prove existence and concentration properties of ground state solutions for $\\varepsilon>0$ small. Moreover, we summarize some open problems for the Schr\\\"odinger-Poisson system.", "revisions": [ { "version": "v1", "updated": "2020-09-15T19:47:37.000Z" } ], "analyses": { "keywords": [ "schrödinger-poisson system", "local potential", "ground state solutions", "small parameter", "type equation" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable" } } }