{ "id": "2009.07029", "version": "v1", "published": "2020-09-12T06:23:10.000Z", "updated": "2020-09-12T06:23:10.000Z", "title": "A Lemma for Color Switching on the Square Lattice", "authors": [ "Philippe Sosoe", "Lily Z. Wang" ], "comment": "10 pages, 2 figures. arXiv admin note: text overlap with arXiv:2001.07872", "categories": [ "math.PR" ], "abstract": "We consider 2d critical Bernoulli percolation on the square lattice. We prove an approximate color-switching lemma comparing k arm probabilities for different polychromatic color sequences. This result is well-known for site percolation on the triangular lattice in [Nolin08]. To handle the complications arising from the dual lattice, we introduce a shifting transformation to convert arms between the primal and the dual lattices.", "revisions": [ { "version": "v1", "updated": "2020-09-12T06:23:10.000Z" } ], "analyses": { "subjects": [ "82B43", "60K35" ], "keywords": [ "square lattice", "color switching", "dual lattice", "2d critical bernoulli percolation", "polychromatic color sequences" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }