{ "id": "2009.06284", "version": "v1", "published": "2020-09-14T09:23:24.000Z", "updated": "2020-09-14T09:23:24.000Z", "title": "What mathematical billiards teach us about statistical physics?", "authors": [ "Péter Bálint", "Thomas Gilbert", "Domokos Szász", "Imre Péter Tóth" ], "comment": "47 pages, 3 figures, submitted to Pure and Applied Functional Analysis", "categories": [ "cond-mat.stat-mech", "math.DS", "nlin.CD" ], "abstract": "We survey applications of the theory of hyperbolic (and to a lesser extent non hyperbolic) billiards to some fundamental problems of statistical physics and their mathematically rigorous derivations in the framework of classical Hamiltonian systems.", "revisions": [ { "version": "v1", "updated": "2020-09-14T09:23:24.000Z" } ], "analyses": { "subjects": [ "37D50", "37A60", "37A50" ], "keywords": [ "mathematical billiards teach", "statistical physics", "lesser extent non hyperbolic", "classical hamiltonian systems", "fundamental problems" ], "note": { "typesetting": "TeX", "pages": 47, "language": "en", "license": "arXiv", "status": "editable" } } }