{ "id": "2009.05822", "version": "v1", "published": "2020-09-12T16:27:03.000Z", "updated": "2020-09-12T16:27:03.000Z", "title": "A New Inequality For The Hilbert Transform", "authors": [ "Sakin Demir" ], "categories": [ "math.CA" ], "abstract": "Suppose that $\\{a_j\\}\\in l^1$ has finite support. Then we prove that there is a constant $C$ such that $$\\sum_{n=1}^\\infty\\sharp\\left\\{k\\in\\mathbb{Z}:\\left| \\sum_{i=-n}^n \\! \\raise{1ex}\\hbox{${}'$} \\frac{a_{k+i}}{i} \\right| > \\lambda\\right\\} \\leq \\frac{C}{\\lambda}\\sum_{i=-\\infty}^\\infty |a_i|$$ for all $\\lambda>0$. We show as a corollary that one can use a transference argument to have an analogue result for the ergodic Hilbert transform.", "revisions": [ { "version": "v1", "updated": "2020-09-12T16:27:03.000Z" } ], "analyses": { "subjects": [ "26D07", "47A35" ], "keywords": [ "inequality", "ergodic hilbert transform", "transference argument", "finite support" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }