{ "id": "2009.04425", "version": "v1", "published": "2020-09-09T17:15:55.000Z", "updated": "2020-09-09T17:15:55.000Z", "title": "(In)Existence of Equilibria for 2-Players, 2-Values Games with Concave Valuations", "authors": [ "Chryssis Georgiou", "Marios Mavronicolas", "Burkhard Monien" ], "comment": "34 pages, 4 figures", "categories": [ "cs.GT" ], "abstract": "We consider 2-players, 2-values minimization games where the players' costs take on two values, $a,b$, $a b$, then there exists a normal 2-players, 2-values, 3-strategies game without $\\mathsf{F}$-equilibrium. To the best of our knowledge, this work is the first to provide an (almost complete) answer on whether there is, for a given concave function $\\mathsf{F}$, a counterexample game without $\\mathsf{F}$-equilibrium.", "revisions": [ { "version": "v1", "updated": "2020-09-09T17:15:55.000Z" } ], "analyses": { "keywords": [ "equilibrium", "concave valuations", "counterexample game", "players play mixed strategies", "linear time algorithm" ], "note": { "typesetting": "TeX", "pages": 34, "language": "en", "license": "arXiv", "status": "editable" } } }