{ "id": "2009.03471", "version": "v1", "published": "2020-09-08T01:02:44.000Z", "updated": "2020-09-08T01:02:44.000Z", "title": "Borel sets without perfectly many overlapping translations, III", "authors": [ "Andrzej Roslanowski", "Saharon Shelah" ], "categories": [ "math.LO" ], "abstract": "We expand the results of Roslanowski and Shelah arXive:1806.06283 , arXive:1909.00937 to all perfect Abelian Polish groups $(H,+)$. In particular, we show that if $\\alpha<\\omega_1$ and $4\\leq k<\\omega$, then there is a ccc forcing notion adding a $\\Sigma^0_2$ set $B\\subseteq H$ which has $\\aleph_\\alpha$ many pairwise $k$--overlapping translations but not a perfect set of such translations.", "revisions": [ { "version": "v1", "updated": "2020-09-08T01:02:44.000Z" } ], "analyses": { "subjects": [ "03E35", "03E15", "03E50" ], "keywords": [ "overlapping translations", "borel sets", "perfect abelian polish groups", "perfect set", "roslanowski" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }