{ "id": "2009.02272", "version": "v1", "published": "2020-09-04T16:10:08.000Z", "updated": "2020-09-04T16:10:08.000Z", "title": "Face numbers of barycentric subdivisions of cubical complexes", "authors": [ "Christos A. Athanasiadis" ], "comment": "10 pages", "categories": [ "math.CO" ], "abstract": "The $h$-polynomial of the barycentric subdivision of any $n$-dimensional cubical complex with nonnegative cubical $h$-vector is shown to have only real roots and to be interlaced by the Eulerian polynomial of type $B_n$. This result applies to barycentric subdivisions of shellable cubical complexes and, in particular, to barycentric subdivisions of cubical convex polytopes and answers affirmatively a question of Brenti, Mohammadi and Welker.", "revisions": [ { "version": "v1", "updated": "2020-09-04T16:10:08.000Z" } ], "analyses": { "subjects": [ "05E45" ], "keywords": [ "barycentric subdivision", "face numbers", "dimensional cubical complex", "real roots", "eulerian polynomial" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }