{ "id": "2009.01688", "version": "v1", "published": "2020-09-01T06:06:15.000Z", "updated": "2020-09-01T06:06:15.000Z", "title": "New Refinements of Cusa-Huygens inequality", "authors": [ "Christophe Chesneau", "Marko Kostic", "Branko Malesevic", "Bojan Banjac", "Yogesh J. Bagul" ], "categories": [ "math.CA" ], "abstract": "In the paper, we refine and extend Cusa-Huygens inequality by simple functions. In particular, we determine sharp bounds for $\\sin(x) /x$ of the form $(2+\\cos(x))/3 -(2/3-2/\\pi)\\Upsilon(x)$, where $\\Upsilon(x) >0$ for $x\\in (0, \\pi/2)$, $\\Upsilon(0)=0$ and $\\Upsilon(\\pi/2)=1$, such that $\\sin x/x$ and the proposed bounds coincide at $x=0$ and $x=\\pi/2$. The hierarchy of the obtained bounds is discussed, along with graphical study. Also, alternative proofs of the main result are given.", "revisions": [ { "version": "v1", "updated": "2020-09-01T06:06:15.000Z" } ], "analyses": { "keywords": [ "refinements", "determine sharp bounds", "extend cusa-huygens inequality", "simple functions", "bounds coincide" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }