{ "id": "2009.01414", "version": "v1", "published": "2020-09-03T02:05:33.000Z", "updated": "2020-09-03T02:05:33.000Z", "title": "Diophantine geometry and Serre C*-algebras", "authors": [ "Igor Nikolaev" ], "comment": "9 pages", "categories": [ "math.NT", "math.OA" ], "abstract": "Let $V(k)$ be projective variety over a number field $k$ and let $K$ be a finite extension of $k$. We classify the $K$-isomorphisms of $V(k)$ in terms of the Serre $C^*$-algebra of $V(k)$. As an application, a new proof of the Faltings Finiteness Theorem for the rational points on the higher genus curves is suggested.", "revisions": [ { "version": "v1", "updated": "2020-09-03T02:05:33.000Z" } ], "analyses": { "subjects": [ "11G35", "14A22", "46L85" ], "keywords": [ "diophantine geometry", "faltings finiteness theorem", "higher genus curves", "number field", "finite extension" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable" } } }