{ "id": "2009.00925", "version": "v1", "published": "2020-09-02T10:04:09.000Z", "updated": "2020-09-02T10:04:09.000Z", "title": "Some properties of circle maps with zero topological entropy", "authors": [ "Yini Yang" ], "categories": [ "math.DS" ], "abstract": "For a circle map $f\\colon\\mathbb{S}\\to\\mathbb{S}$ with zero topological entropy, we show that a non-diagonal pair $\\langle x,y\\rangle\\in \\mathbb{S}\\times \\mathbb{S}$ is non-separable if and only if it is an IN-pair if and only if it is an IT-pair. We also show that if a circle map is topological null then the maximal pattern entropy of every open cover is of polynomial order.", "revisions": [ { "version": "v1", "updated": "2020-09-02T10:04:09.000Z" } ], "analyses": { "keywords": [ "zero topological entropy", "circle map", "properties", "non-diagonal pair", "maximal pattern entropy" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }