{ "id": "2009.00479", "version": "v1", "published": "2020-09-01T14:31:59.000Z", "updated": "2020-09-01T14:31:59.000Z", "title": "Bosonic and Fermionic Representations of Endomorphisms of Exterior Algebras", "authors": [ "Ommolbanin Behzad", "Letterio Gatto" ], "comment": "20 pages, no figures", "categories": [ "math.RT", "math-ph", "math.AG", "math.CO", "math.MP" ], "abstract": "We describe the fermionic and bosonic Fock representation of the Lie super-algebra of endomorphisms of the exterior algebra of the ${\\mathbb Q}$-vector space of infinite countable dimension, vanishing at all but finitely many basis elements. We achieve the goal by exploiting the extension of the Schubert derivations to the Fermionic Fock space.", "revisions": [ { "version": "v1", "updated": "2020-09-01T14:31:59.000Z" } ], "analyses": { "subjects": [ "14M15", "15A75", "05E05", "17B69" ], "keywords": [ "exterior algebra", "fermionic representations", "endomorphisms", "bosonic fock representation", "fermionic fock space" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable" } } }