{ "id": "2009.00423", "version": "v1", "published": "2020-08-30T17:38:34.000Z", "updated": "2020-08-30T17:38:34.000Z", "title": "Counterexamples to a conjecture of Merker on 3-connected cubic planar graphs with a large cycle spectrum gap", "authors": [ "Carol T. Zamfirescu" ], "comment": "3 pages, 2 figures", "categories": [ "math.CO" ], "abstract": "Merker conjectured that if $k \\ge 2$ is an integer and $G$ a 3-connected cubic planar graph of circumference at least $k$, then the set of cycle lengths of $G$ must contain at least one element of the interval $[k, 2k+2]$. We here prove that for every even integer $k \\ge 6$ there is an infinite family of counterexamples.", "revisions": [ { "version": "v1", "updated": "2020-08-30T17:38:34.000Z" } ], "analyses": { "subjects": [ "05C38", "05C10" ], "keywords": [ "large cycle spectrum gap", "cubic planar graph", "counterexamples", "conjecture", "cycle lengths" ], "note": { "typesetting": "TeX", "pages": 3, "language": "en", "license": "arXiv", "status": "editable" } } }